View of Data


At the logical level, each such record is described by a type definition, as in the previous code segment, and the interrelationship of these record types is defined as well. Programmers using a programming language work at this level of abstraction. Similarly, database administrators usually work at this level of abstraction.
Finally, at the view level, computer users see a set of application programs that hide details of the data types. At the view level, several views of the database are defined, and a database user sees some or all of these views. In addition to hiding details of the logical level of the database, the views also provide a security mechanism to prevent users from accessing certain parts of the database. For example, clerks in the university registrar office can see only that part of the database that has information about students; they cannot access information about salaries of instructors.

1.3.2 Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of information stored in the database at a particular moment is called an instance of the database. The overall design of the database is called the database schema. Schemas are changed infrequently, if at all.
The concept of database schemas and instances can be understood by analogy to a program written in a programming language. A database schema corresponds to the variable declarations (along with associated type definitions) in a program. Each variable has a particular value at a given instant. The values of the variables in a program at a point in time correspond to an instance of a database schema.
Database systems have several schemas, partitioned according to the levels of abstraction. The physical schema describes the database design at the physical level, while the logical schema describes the database design at the logical level. A database may also have several schemas at the view level, sometimes called subschemas, that describe different views of the database.
Of these, the logical schema is by far the most important, in terms of its effect on application programs, since programmers construct applications by using the logical schema. The physical schema is hidden beneath the logical schema, and can usually be changed easily without affecting application programs. Application programs are said to exhibit physical data independence if they do not depend on the physical schema, and thus need not be rewritten if the physical schema changes.
We study languages for describing schemas after introducing the notion of data models in the next section.

1.3.3 Data Models
Underlying the structure of a database is the data model: a collection of conceptual tools for describing data, data relationships, data semantics, and consistency constraints. A data model provides a way to describe the design of a database at the physical, logical, and view levels. 

There are a number of different data models that we shall cover in the text.
The data models can be classified into four different categories:
Relational Model. The relational model uses a collection of tables to repre- sent both data and the relationships among those data. Each table has mul- tiple columns, and each column has a unique name. Tables are also known as relations. The relational model is an example of a record-based model. Record-based models are so named because the database is structured in fixed-format records of several types. Each table contains records of a par- ticular type. Each record type defines a fixed number of fields, or attributes. The columns of the table correspond to the attributes of the record type. The relational data model is the most widely used data model, and a vast major- ity of current database systems are based on the relational model. Chapters 2 through 8 cover the relational model in detail.
Entity-Relationship Model. The entity-relationship (E-R) data model uses a collection of basic objects, called entities, and relationships among these objects. An entity is a thingor objectin the real world that is distinguishable from other objects. The entity-relationship model is widely used in database design, and Chapter 7 explores it in detail.
Object-BasedDataModel.Object-orientedprogramming(especiallyinJava, C++, or C#) has become the dominant software-development methodology. This led to the development of an object-oriented data model that can be seen as extending the E-R model with notions of encapsulation, methods (functions), and object identity. The object-relational data model combines features of the object-oriented data model and relational data model. Chap- ter 22 examines the object-relational data model.
Semistructured Data Model. The semistructured data model permits the specification of data where individual data items of the same type may have different sets of attributes. This is in contrast to the data models mentioned earlier, where every data item of a particular type must have the same set of attributes. The Extensible Markup Language (XML) is widely used to represent semistructured data. Chapter 23 covers it.
Historically, the network data model and the hierarchical data model pre- ceded the relational data model. These models were tied closely to the underlying implementation, and complicated the task of modeling data. As a result they are used little now, except in old database code that is still in service in some places. They are outlined online in Appendices D and E for interested readers. 

Post a Comment